CNNによるMNISTの埋め込み(t-SNEも)

  • 前回に続いて,学習済みモデルの中間層の出力を取り出す例として,学習済みCNNを自己符号化(オートエンコーダ)として使う例をやってみる。
  • コードはPyTorch公式exampleのmnistを少しいじって,モデルの中間層が取り出しやすくして,t-SNEによる埋め込みを行った。と言っても,t-SNEはsklearnを使っているだけ。t-SNEはアルゴリズム的に学習済みモデルを使って予測,という類の使い方ではない。つまり,他のsklearnのモデルみたいに学習データでfitして,評価したいデータをpredict,みたいな使い方は(基本的には)できない。
from __future__ import print_function
import numpy as np
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.encoder = nn.Sequential(
            # Conv1
            nn.Conv2d(1, 10, kernel_size=5),
            nn.MaxPool2d(kernel_size=2),
            nn.ReLU(),
            # Conv2
            nn.Conv2d(10, 20, kernel_size=5),
            nn.Dropout2d(),
            nn.MaxPool2d(kernel_size=2),
            nn.ReLU(),
        )
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = self.encoder(x)
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)

def train(args, model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))

def test(args, model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            # sum up batch loss
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            # get the index of the max log-probability
            pred = output.max(1, keepdim=True)[1]
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))

def auto_encode(args, model, device, test_loader):
    model.eval()
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            latent_vecs = model.encoder(data)
            latent_vecs = latent_vecs.view(-1, 320)
            latent_vecs = model.fc1(latent_vecs)
    return latent_vecs, target

def main(train=False):
    # Training settings
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument('--test-batch-size', type=int, default=10000, metavar='N',
                        help='input batch size for testing (default: 10000)')
    parser.add_argument('--epochs', type=int, default=10, metavar='N',
                        help='number of epochs to train (default: 10)')
    parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
                        help='learning rate (default: 0.01)')
    parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
                        help='SGD momentum (default: 0.5)')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                        help='disables CUDA training')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                        help='how many batches to wait before logging training\
                        status')
    args = parser.parse_args()
    use_cuda = not args.no_cuda and torch.cuda.is_available()

    torch.manual_seed(args.seed)

    device = torch.device("cuda" if use_cuda else "cpu")

    kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
    train_loader = torch.utils.data.DataLoader(
        datasets.MNIST('/home/hoge/PyTorch_MLdata/MNIST',
                       train=True,
                       download=True,
                       transform=transforms.Compose([
                           transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))
                       ])),
        batch_size=args.batch_size, shuffle=True, **kwargs)
    test_loader = torch.utils.data.DataLoader(
        datasets.MNIST('/home/hoge/PyTorch_MLdata/MNIST',
                       train=False,
                       transform=transforms.Compose([
                           transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))])),
        batch_size=args.test_batch_size, shuffle=True, **kwargs)

    model = Net().to(device)

    if train:
        optimizer = optim.SGD(model.parameters(), lr=args.lr,
                              momentum=args.momentum)
        for epoch in range(1, args.epochs + 1):
            train(args, model, device, train_loader, optimizer, epoch)
            test(args, model, device, test_loader)

        torch.save(model.state_dict(), './model_param_autoencoder.pkl')

    # Auto Encode using trained model
    model.load_state_dict(torch.load('./model_param_autoencoder.pkl'))
    latent_vecs, target = auto_encode(args, model, device, test_loader)
    latent_vecs, target = latent_vecs.numpy(), target.numpy()
    print(latent_vecs.shape, target.shape)
    latent_vecs_reduced = TSNE(n_components=2,\
                               random_state=0).fit_transform(latent_vecs[:1000])
    plt.scatter(latent_vecs_reduced[:, 0], latent_vecs_reduced[:, 1],
                c=target[:1000], cmap='jet')
    plt.colorbar()
    plt.show()
    
if __name__ == '__main__':
    main(train=False)